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1. Introduction

Correlation functions in any 2-dimensional CFT can be expressed as sums (or integrals)
of three-point coupling constants and some universal, model independent functions called
conformal blocks [l]. Even in a simple case of the 4-point conformal block its direct calcu-
lation is prohibitively complicated. Efficient recursive methods of an approximate, analytic
determination of a general 4-point conformal block has been pioneered long time ago by
Al. Zamolodchikov [f—[]. His method was used for instance in checking the conformal
bootstrap in the Liouville field theory with the Dorn, Otto, Zamolodchikov and Zamolod-
chikov coupling constants [ff], in a study of the ¢ — 1 limit of minimal models [fj] or in
obtaining new results in the classical geometry of hyperbolic surfaces [ff.

Recently a recursion representation has been worked out for the super-conformal blocks
related to the Neveu-Schwarz algebra [§—[LT]. The so called elliptic recursion was conjec-
tured in [L0] for one type of NS blocks and used for a numerical verification of the consis-
tency of N = 1 super-Liouville field theory. An extension of this method to another type of
NS blocks was proposed in [[[I]] where also further numerical support for the consistency of
the N = 1 super-Liouville theory was presented. A comprehensive derivation of the elliptic
recursion for all types of NS blocks was given in [J].

In the present paper we address the problem of the elliptic recurrence for conformal
blocks in the Ramond sector of N=1 SCFT. We restrict ourselves to the class of SCFT
models with the tensor product R ® R of the left R and the right R Ramond algebras
extended by the common (for the left and the right sector) parity operator (—1)F. We
shall also consider only 4-point blocks with Ramond external states which correspond to
factorization on Neveu-Schwarz states.



There are some features of the Ramond sector which make a standard analysis of
conformal blocks more difficult than in the NS and the bosonic cases.! First of all the
structure of 3-point conformal blocks is more complicated. Since the correlation functions
of one fermionic current, two Ramond and one Neveu-Schwarz fields are double valued the
standard contour deformation arguments do not work. One way to avoid this problem
has been proposed in the early days of the 2-D SCFT [[[J] (see also [14] for more detailed
analysis). In the present paper we follow essentially the same approach considering single
valued functions

(p(00,0)S(w)Re(z,2)R1(0,0))v/ (w — z)w

and expressing contour integrals around a location of each field in terms of fields excitations.
This leads to the Ward identities ([L]), (.9) which determine the 3-point blocks up to four
independent constants. Fortunately in spite of their complicated form one can derive all
properties of the 3-point blocks required for the derivation of the elliptic recurrence formula.
Let us mention that the so called z-expansion seems to be available in the present case
only via the elliptic recurrence.

The second complication arises from the fact that the tensor product of the left and
the right chiral structures has to be reduced to an irreducible representation of R ® R
extended by (—1)¥. This reduction is responsible for the reduction of eight independent
constants hidden in 3-point blocks into two independent structure constants of the Ramond
sector. It also determines the representation of the Ramond fields in terms of chiral vertex
operators and suggests a convenient basis of the 3-point blocks for which this representa-
tion is diagonal.

Once the structure and properties of the 3-point blocks are clarified the definition
of 4-point conformal blocks is straightforward. As in the case of the NS sector one gets
four even and four odd conformal blocks. With the appropriate definition at hand one can
follow Zomolodchikov’s method of the derivation of the elliptic recurrence [[f]. As in the NS
case [ the arguments concerning large intermediate weight A asymptotic are based on
the quasiclassical limit of the path integral representation of the Liouville theory. Regular
terms of elliptic blocks can be calculated from the ¢ = 1 conformal block with A; = %
Ramond external states and an arbitrary intermediate weight. An explicit formula for this
blocks can be obtained using the techniques of the chiral superscalar model [[7].

The organization of the paper is as follows. In section 2 we present our notation and
basic properties of the 3-point functions in the Ramond sector [[L]. Section 3 is devoted to
the basic structure of the highest weight chiral module for the Ramond algebra extended by
the chiral parity operator [[[d]. The reduction of the tensor product of the left and the right
modules to an irreducible representation of R ® R extended by (—1)" is briefly described.
In section 4 we use the Ward identities to determine the properties of the 3-point conformal
blocks. This section contains the main results of the present paper and paves a way for
an appropriate definition of the conformal blocks. In section 5 we define 4-point conformal
blocks and analyze their analytic properties as functions of the intermediate weight. The

!The structure of the 3-point conformal blocks in the Ramond sector is scarcely discussed in literature E,
@] We are not aware of any discussion on the 4-point blocks with external Ramond states.



main result of this section is a calculation of the residua at singular weights. As a side
result we obtained a universal property of the Ramond structure constants C* (2.7) in a
general N = 1 SCFT. If the even fusion rules (f.13) are satisfied C* = —C~, while for the
odd fusion rules (f.14) one has C* = C~. In section 6 we discus the large A asymptotic
of the conformal blocks and derive the elliptic recurrence formula. The regular terms of
elliptic blocks are also calculated.

There are some problems which are natural continuation of the present work. First
of all one should extend the analysis to the blocks related to the factorization on Ramond
states. This can be done with the techniques developed in the present paper. The second
possible topic is to extend the elliptic recurrence methods to the N = 2 SCFT. Let us also
mention that one can use our results to check consistency of the N = 1 super Liouville
theory [[[§] or its ¢ — 1 limit [[[]].

2. Three-point correlation functions of the Ramond sector

The superconformal symmetry is generated by a pair of holomorphic currents T'(z), S(z)
(and their anti-holomorphic counterparts T(z), S(z)) satisfying the OPE-s

T(=)T(0) = 2t ST(0)+ 0T(0) 4+
T()8(0) = QS(O) 4 255(0) b (2.1)
S()S(0) = o+ 2T(0) +

The space of fields of superconformal field theory (hereafter SCFT) decomposes onto the
space of the Neveu-Schwarz (or NS for short) fields ¢ng local with respect to S(z), and
the space of the Ramond fields R with the property that any correlation function of the
form (S(z)R(z1, 1) ...) changes the sing upon analytic continuation in z around the point
z = z1. This property implies the following form of the OPE:

S(z = 3 225 ,R(0,0).
meEZ
Together with the usual Virasoro generators L, defined by
T(2)R(0,0) = Y 2" L_,R(0,0),
nez
Sj, form the Ramond algebra determined by (P.1),
[Lin, Lp) = (m —n)Lypgp + ‘m (m2 — 1) Omtns

12
[Lma Sn] = o ; 2n5m+n7 (2.2)

1
{Sm,Sn} = 2Lin + g <m2 N Z) Spin.



In the space of all R fields there exist “super-primary” fields Ri A(w,fu’)) with the
conformal weights A, A, which satisfy the OPE’s?

A _ 1 _
T(Z)RK’A(M,U)) ~ mRi7é(’w,w) + ZfaRiA(w,w),
_ - A -
T(2)Ry 5(w, @) ~ m}zh( W) + jaRi (w, D) (2.3)
and
_ iffet" _
S(Z)Ri7ﬁ(w7 w) ~ (Z _ w)g RI’A(w7 w)7
_ _ ifeTi _
S(2)Ry 5 (w,w) ~ . w)%Ri’A(w,w), (2.4)
where (3, 3 are related to the conformal weights by
_° g A= S 2
A= 5 A=gh

Using projective transformations one can express three-point function involving two R
primary fields and one NS primary superfield

D3(2,0;2,0) = (z,2) + 09(2, 2) + 0Y(2, 2) + i005(2, Z)
in the form
<@3(23= 03; 73, 03) RY™ (29, 22) RV (21, 51)> = 235735 231 23) 2323,

X |:651,62 <0321 + 0321 9 93) (25)

1 1
. 23172 Z31% 2 _
+ Oy~ <D3121 < = 32) 03 + Db, ( = 32) 93)] (2.6)
2192 212

where v1 = A1 — Ag — A3, 212 = 21 — 22 etc. and

31 <32

Cahy = (wa(o0,00)BE (1, DR (0,0)), (2.7)
Cih1 = (Ps(00,0) B3 (1L1)RE(0,0)), (2.8)
Dy = (s(00,00) B3 (1, 1)RF (0,0) ), (2.9)
Digy = (s(00,00) B3 (1,1)RF (0,0)). (2.10)

Due to the Ward identities
(S_1s(00,00) B (1, 1) E{ (0,0))
= (p3(00,00)So R (1, 1) (0,0) ) + de(3(00, 50) R (1, 1) Sy RS (0,0)),

2Following [@] we chose the “symmetric” convention for + components of the Ramond fields.



(S_1s(00,00) B (1, 1) E{ (0,0))
= (p3(00,00)SoR5(1, 1) (0,0) ) — ie(i23(00,50) R (1, 1) Sy RS (0,0)),
only two of these structure constants are independent:

Cin = Fi [(BuBr + B2B2)Cizy — (B1B2 + 231)Cy |

D35, = ie™'1 [BCFH, + B1C55] (2.11)
D:)jle = —ieTi [32C, + 5103%21] :

3. R supermodule

In SCFT one usually works with the Ramond algebra (R.2) extended by the fermion parity
operator (—1)%:
(=7, L) = {(=1)7, 8.} =0, m,n € L.

Let wZ be the highest weight state with respect to the extended Ramond algebra (2.3)

where N is the set of positive integers. We denote by W£ the free vector space generated
by all vectors of the form

wZ,KM = S—KL—M'lUZ = S—ki - S—le—mj ... L_mlu)z , (3‘2)

where K = {k1, ko, ..., k;} C NU{0} and M = {my,ma,...,m;} C N are arbitrary ordered
sets of indices
ki < ... < ko <k, mjg...gmggml,

such that | K|+ |[M| =k + -+ ki +mq+---+m; = f.
The Z-graded representation of the extended Ramond algebra determined on the space

Wa = Wi
feNuU{0}

by the relations (R.2) and (B.1]) is called the R supermodule of the highest weight A and
the central charge ¢ (in order to simplify the notation we omit the subscript ¢ at W).
Each W£ is an eigenspace of Ly with the eigenvalue A + f. The space Wa has also a
natural Zs-grading;:

Wa = Wiews., wi=@ wit, wi =@ wi,
feNu{o} feNu{o}

where Wﬁi are common eigenspaces of the operators Ly, (—1)F . Note that the subspaces
W, W™ are 1-dimensional except the case A = & where WX~ = {0}.

A nonzero element x € W£ of degree f is called a singular vector if it satisfies the
highest weight conditions (B.1) with Lox = (A + f)x. It generates its own R supermodule
Wa4 ¢ which is a submodule of WAa.



The analysis of singular vectors can be facilitated by introducing a symmetric bilinear
form (.,.)c,A on Wa uniquely determined by the relations (wa,wa) =1, (wa, Sowa) =0
and (L))" = L_p, (Sg)t = S_. It is block-diagonal with respect to the Lo- and (—1)%-
grading. We denote by B C{ i the matrix of (.,.). A on ng calculated in the basis (B.9):

s

+ +
eA (WA KA WA LN oA (3.3)

]KM,LN N
It is nonsingular if and only if the R supermodule Wa does not contain singular vectors of
degrees 0,1,2,..., f. The formula for the determinant of this matrix was conjectured by
Friedan, Qiu and Shenker [LJ] and proven by Meurman and Rocha-Caridi R0]. For level
zero it reads

det B’S =1, det By = A — i,
and for higher levels
+ c PR2(f) Pr(f—12)
det B/E = (A - ﬁ) [T (- A=), (3.4)
1<rs<L2f

where r, s € N, the sum r + s must be odd and

1 rs—1 1—72 1-s%1 3 1\?

As(c) = — — 2 —, == b+ -1 . .
(c) 16 1 + 3 + FR— c 2+3<+b> (3.5)

The multiplicity of each zero is given by Pr(f) = dim W£ and can be read off from

> ped =] T
f=0 n=1 q

The tensor product Wa ® Wjx of the left and the right R supermodules is defined
as a graded tensor product of representations of Zo-graded algebras. This provides a

the relation

3

representation of the direct sum R @ R of left and right Ramond algebras extended by
the left (—1)f% and the right (—1)f® parity operators. We are usually interested in the
extension of R ® R by the common parity operator

(-1)F = (-1Fr(-1)"=

and the corresponding Zo-grading. For A, A # 57 an appropriate representation can
be easily obtained restricting the action of R ® R and (—1)¥ to an invariant subspace
Waar CWaA® W4 generated by the vectors

1 — _
wzﬁzﬁ(wI@wz—zwA@wA), (3.6)
we . = L <w+®w? + wy ®wa>

AL T /A A A Ao
where w, = e%‘rSowZ and wy = eiﬁfz S’sz. We shall call it a ”small” representation.

The choice of basis (B.) in the zero level subspace Wg & corresponds to our choice of
the Ramond fields (2.4)

+ . FEF
SowAA—zﬁe TWR s

—_ s T
Sowt . = —ifetiwT

AA AA" (3.7)



4. Three-point conformal blocks

Super-descendants a A (€, €|z, 2) of the super-primary field pa x(w, @]z, 2) = @a A(2,2)
are defined by the relations:

= d _
(’DA,A(L—mﬁ’ﬂza 2) = f 2—:_:;(10 - Z)l_mT(w)QDA’A(f,ﬂZ, 2)7 m e Na
= d 1 _
oa (548800 = § oo - i HSwipaa(edln),  keN-}

and by analogous formulae for the Ramond sector

dw

RA,A(L—mUﬂﬂZ:E) = % %(w - Z)l_mT(w)RA,A(n7ﬁ‘Z72)a m e Na
o dw 1_p o
RAA(S_kn,n\z,z) = %(w —2)2 S(w)RAA(n,n]z,z), ke N.

Using conformal Ward identities one can express an arbitrary correlator of three descen-
dants as a sum of terms which can be further factorized onto a holomorphic and anti-
holomorphic parts. Consider for instance a correlator of two arbitrary excited Ramond
fields R(z,z), R€(0,0) of definite parities €, ¢’ and an arbitrary NS excited field ¢ (00, 00).
Due to a square root singularity the Ward identities are more complicated than in the NS
sector. They read:

S (57) a7 s RO R ) (41)

p=0
- ( ) (2 (S, 16)(cc) R ()R (0))
p=0
—ie)” ( ) (1) 23 P(0(00) R (2) (S B )(0)).
p=0
> () P (9(00) (Syn BO) () B (0)) (12
p=0

Il
N
S

3
+
N
~~_
n
o
=
n

in—10)(00) RE(2) R (0))

[e.e]
. —n+1 T ¢ ¢
—zez<p ) (—=1)"*Pg =+ 3 7P (¢(00) RS () (S, RS )(0)).
p=0
The corresponding relations hold in the anti-holomorphic sector.
Our aim in this section is to decompose a general 3-point functions onto left and
right 3-point conformal blocks. The first complication arises due to the block structure

Dyn| 0 N
@:—’7, R* =
[0 @RR]

of field operators
0 |R%:
Rix| O

)




with respect to the direct sum decomposition H = Hys @ Hg of the space of states. Due
to the hermitian conjugation rules:?

Dp A2 z)T—z 24 _25<I>A’A (i l), Ri (z z)T—z 24 _2AR§A(1 1),

Z'z

the off-diagonal blocks of the Ramond field are related to each other:
(R(00) Ritu (2, 2)0(0)) = 27282728 (g(00) R, (£, 1) R(0)). (4.3)

As in the NS case [§] we define the chiral vertex operators in terms of 3-linear forms.
In the R-R sector the form

Q%}%AZA% 32) i Wag X Va, X Wa, +— C

satisfies the relations*

0REA B (S s, &2, 15 2) = (—1)ImITImslFL gababa )y ) 1S s 2)

o0
1
+ > (Zig)zn FoRat28 (n3, Sia.mi; 2),

O /1
Z(ﬁ) 237 gRaReR (3 S, 6o s z) =

p=0

o
1k
S (1) (o A Sy ami)

p=0
|m3 || [ +1 — (1-k 1o kep AsAsA
—(=yrm Z<2p >(—2)2 PoRit2R (ng, &, Spnt; 2)
p=0

where |7;| denote parities of Ramond states. The form is determined by the relations above
up to two independent constants. The appropriate constructions and derivations parallel
to large extend those of the NS-NS sector and we shall skip them in the present paper.

Since the NS-R and R-NS sectors are related by the hermicity condition ([.3)) we shall
restrict ourselves to the NS-R one. The form (anti-linear in the left argument and linear
in the central and the right ones)

QAgAzAl(”‘ 72;) . VAS XWA2 XWAl — C

is defined by

o
41
Z(Z 2> 2P gR3A N (g5, S,y 2)
p=0
i(—1 53+|771+IZ<

3We assume that R™ is hermitian, then the hermicity of R~ follows from the definition of SoR™.
4The chiral Ward identities for the Virasoro generators L,, are the same in all sectors. The corresponding

Dol

GRudad
> 2)7 ong 2T (S 1835705115 2)

D ol=

> pQﬁ%AQAI (&3,m2, Sn4p; 2),

formulae can be found in [E] For the sake of simplicity we suppress all the L_,, excitations dependence.



22 P QA3A2A1(€37 p— nt2, M52 ) (44)

(]
N——

3
Il
o

o0
—n+1
_ Z( " ) 2P oRA(S, 1 Esmemi )
- + -
— (-1 |€3|+"1|+1Z< ' > 1)P o3P pRaRe A (6 iy S ).

It is almost completely determined by these relations. In particular, for Lg-eingenstates,
Lo &3 = A3(£3)€3, Lomi = Ai(mi) mi, @ = 1,2 one has:

A3AaAq

OnNR (5377727771;2) = zAS(SS)_A2(772)—A1(T]1)

Q%%AQM (&3,m2,m51). (4.5)

In contrast to the forms in the NS-NS and R-R sectors it depends on four rather than
two arbitrary constants. We define the forms p¥,:i,j = & as coefficients in front of
these constants:

Q%]BQAZAl(&%U%nI;Z) pNR (537”27”1) )Q%I%AzAl(V&w;)wf—;l)
+pNR (53777277717 )Q%?{AQAI(V?Hw;—awl_; 1) (46)
‘1‘91;;(537772,7717 )Q%IBQAQAl(V&w;va;l)

+pr (E3,m2,m; 2) 05320 (vs, wy , wi 3 1)

From ([.5) one easily gets

P (&3, ma, 1 2) = 2R =A20m)=Aalm) yi7 (o o )

where p (€3, m2,m) = pPa(€3,m2,m1;1). Analyzing the Ward identities (.4) one can
derive the relations:

P—z\tR( —1v, w;,S_wa) = pNR(S v, w2’S—wa_)
pni(S_ v wy, S_ywi) = pht(S_ v, wi, S_jwi), (4.7)
PR (S, wy, S_juf) = IONR(S w,wy , S—ywy),
Prr (S vawEvS—wa—) = (S—IV7w2’S—Jw1 ),
and
Phn(S_wd, S_ywi) = (=) pli (S, wf, S_ywi),
pvt(S_rv,wf, S_yur) = —i (~1) pg (S_v,w}, S-yui), (1)
oht(S_pw}, S_pur) = —i (~D)) ol (S_v,w}, S_yui),
Prr(S-1v, Wy ,S_le_) = (_1)| ‘pNR(S—IV7w2 ,S_le ).

We shall now briefly analyze how the global parity requirements along with the “small”
representation reduces the number of independent constants in the matrix elements of



Ramond fields from eight to two. We shall start with non normalized chiral vertex operators

VNjEC, VNRO defined in terms of their matrix elements by the form QA?’AQAl
<€3‘VN:|1:1e(Z)‘771> = Q%I%AzAl (€37wi7n1; Z)a ’53‘ + ‘771‘ S 2N7
(&IViEo(2)Im) = o322 (&3, w™E, 3 2), &3] + |m| € 2N + 1.

From the construction of the highest-weight vectors wi A (B.6l) one may expect the following
form of the Ramond fields

Rl—\fi_R = AVI\#;{C ® Vl\jl_:{c + BVI\;’I_:{O ® Vl\;‘;{o + ZBVN_RC ® VN_RC - Z.‘/4‘/N_Ro ® VN_RO Y
RI;R = AVNJ’I_‘{e ® VN_RO - B VN—'—RO ® VN_Re + B VN_Re ® VNJ’I_—{O + AVN_RO ® VN—'I—Ke ’

where the coefficients are fixed up to A and B by the relations (P.11)). The independent

structure constants C* (B.7) are expressed in terms of A, B and constants hidden in the

forms QA3A2A1, @%}’;«,Azm as follows:

C+ = AQNR(V7 w+7w+; 1) éNR(V7w+7w+; 1) + iB QNR(Vaw_7w+; 1) @NR(Vaw_7w+; 1)

+ZB QNR(V7w+7w_;1) @NR(V7w+7w_;1) +AQNR(V7w_7w_;1) gNR(va_ﬂi)_;l)v
(4.9)
C_ = AQNR(V7 w+7w+; 1) éNR(Vaw_7w_; 1) + BQNR(Vuw_7w+) @NR(V7 'lU+,U)_; 1)

-B QNR(V7 w+7w_; 1) gNR(va_7w+; 1) + AQNR(V7w_7w_; 1) gNR(”) w+7w+; 1)
One can check using the relations (f£7), (f.§) that all matrix elements of the Ramond field

R¥,. depend on the arbitrary constants only via the combinations above. Indeed, using the
relations ([.§) one obtains

<S IS IV3®V3| R2 ‘S JS JwAl,A1>

= COpGUS rvs, wi, Sy wi) pNRL(S_ 7, i, S_ )
+ 0O PG (S- [v3,wy, S le)pl(\IRc(g f1737w;75_jwf—)
(S-15_rw@wm| Ry |S-sS_jw} 5))
— (=)W NS s s, wi, Sy wi) pSL (S s, wi, 57w
— (=DM AU vs,wf, Sy wh) PN (S s, wi, S_ g iy)

for 2|I| = |J| and

(S-1S_ws@m| RY |S-sS_juf 5)
= —i(-D)VIC ) (S_r v, wi, S_ywi) pi (S_ i, wi, S_jwy)
—i (~)ICO PGS s vs,wi, Sy wi) Al (S_p s, wh, S_yw)),
(18 rus @] By [S_yS_juk 5))
= CO PRS- g, wi, S_ywi) pSEL(S_gim, wi , S_ 5 w)

4 ol

—CO (S v, wi, S_ywi) pGl(S_p s, wi, 5_ 5 wi)

— 10 —



for 2|I| = |J| + 1, where

o _ CTECT
5
P = P £ P Pine = Dit £ s
P = P £ DR Pns = Phn T iPni-
Introducing chiral vertex operators
(& IV (2) ) = (s, w™ s 2), €3] + | € 2N, (4.10)
(& IVl (2)m) = (&, w ™, m 2), €] + | € 2N+ 1,

one thus gets

R = ¢ (v e Vi) - ivil) e Vi) + O (Vi o W) - ivid e W)Y
(4.11)
B = €9 (VR o WE) + vill e W) - c0 (MR e 1) + vid e 1R)).
The Ramond fields in the R-NS sector are then directly obtained from the hermicity con-
dition (Ri,)" = R, [@3):
iy = O (Vi o v - vl e V) + cO (W e v - v e T,
oy = € (VT e T + vl @ W) — 00 (v o v+ v e ).

Let us observe that

wZ@wz—i—iw;@wg, wZ@wZ —w&@wz € kerR:I—'R,
hence the “small representation” is an invariant subspace of the full Ramond fields R*.

As a side remark let us mention that the chiral decomposition (f.11) can be easily

extended to excited Ramond fields using central arguments of the forms pl(qui)e, pl(\ji)o:
+ +
(&3l VAR (m2)m) = o (Ea, s ), €31+ m2] + Im] € 2N, (4.12)
+)z +
(&l VAR () Imn) = oK (60, ), €3] + ma + Im| € 2N + 1.

Taking into account the graded tensor product structure:

(& @ & Vi) (12) © Vg (1) |Im @ 1) = (= 1) PRI o0 (65 s 1) 0rn (€3, 72, )
where p,p = e,0 and |e| = 0, |o| = 1, one gets for such extension
—iRY(w™ ®@w”) = Rt (wt @ w™),
Rt(wr®@w) = R (w™ @wt) = R™(wt @ a™).
(£) (&)

The forms pygr., Pxr, depend on the sign of (3o in a very simple way:
+ —_
pl(\TR)C(S—IV7 w_527 SJ’LUT) = :tpl(\I:FFil(S—Iya ’LUZ;;, SJ’LUT), (413)

(-1, W, Syw)) = P (S_rv, wh , Sywy).
This yields
RS ;= €Ry. (4.14)
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5. Analytic structure of 4-point conformal blocks

We shall restrict ourselves to the case of correlation functions of four Ramond fields. Te
structure of the 3-point conformal blocks analyzed in the previous section suggests the
following definition:

+

KM,LN .
] ,0|f‘ (VA,LN7w527w1 )7

foo[£8s £82] _ =) PR f
chA |: ﬁi ﬁ?] - Z p‘fl (VA,KMj wﬁ37w4 ) |:BC,A
| K|+|M|=|L|+|N|=f
where |f| = e for f €N, [f| = ofor f € N— %, VA, kM is the standard basis in the NS Verma
5 1KMLN
module V. A, and [BC A]

this basis on the level f € %N . One has four even:

denotes the inverse to the Gram matrix with respect to

P[RR @) = A (1 +3 En [ *Ei}) , G
meN
and four odd,
3 [+8s + A+L—As—A -3 03 £
FARR] @) = vt 30 b [0 62
keN—1

conformal blocks.
It follows from the definition of the blocks’ coefficients F Cf A [igi ig?] that they are
polynomials in (;, and rational functions of the intermediate weight A and the central

charge c. They can be expressed as a sum over the poles in A :

RL [45 4
Ff [iBB iﬁ2] — Rf [iﬁii i62] + ’ 4 1 , 5.3
N ol m al T 20 AT AL (5.3)
r+se2N
with A,s(c) given by Kac determinant formula for NS Verma modules:
rs—1 1-712, 1-5°1 3 1\°
= by e L c2+(+b> (5.4)

The calculation of the residue at A, is essentially the same as in the NS case. With
a suitable choice of basis in VA one gets

RL

4] = a0 o)

e fors  1KMIN
x Zp\(fl)(S‘KL‘MX”’w;’wI) [BC,AT.QSJFL;] P\(ﬂ)(S—LL—Ner,w;,wJF)

)

with )
AL A
o . <X7"s|er>
Apsc) = Al <7A_ Am(c)> : (5.6)
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The coefficients are the same as in the NS-NS sector and their explicit form has been
conjectured in [1] to be:

-1

H H< (pb+b)>, p+q€2Z, (p,q) # (0,0),(r,5). (5.7

pquls

()

The factorization property of the forms pyg’ holds in the present case only on singular
vectors. In the case Z* € N one gets

+
S_ IVArs'i‘*’w;—vwl )pl(\IR)e(er7w2 , Wy ), |I| € Nv

(£)

+
() + +) )
S—KVArs-i- w;vwl )IONRe(XTSyw;—awf—)v |K| € N+ %7

pNRe(S—IXT87 Wy , Wy

pl(\IRZD(S—KXTsv w;, wf—)

()(
()(

=p

while in the case 5 € N+ %

+
pl(\TR)o(S—IXT87w;7w1|—) - pl(\T:'F:{)c(S IVATS-F w;7w1 )pl(\IR)o(XT&wg—uwf—) ’I’ € N7

+
P (S— Xy w3 wl) = i pSRL(S_qva, e w3 w]) Pt (s w  wi ), K| € N+ L.
This yields
+083 +
RL 55 = (58)

+ =% +033 +
Ar(€) Pl (0, 0] ) s wid w VFLL 7 o [P0

for 2 € NU {0}, and

)

RE M 0] = (5.9)

+ + =%
ATS(C) pl(:{N)o(XT’& w;a wi)pl(\IRl(XT’Su ’LU;_, wf)Fin_i_L; |::ng :Fg?]

for 7 € N — %

In order to calculate pﬁ,ﬂ(m, wy ,w]") we shall first consider the three point correla-
tion functions with degenerate field y,s within the Feigin-Fuchs construction [RJ. In this
approach the Ramond fields are represented by vertex operators in the free superscalar

Hilbert space

where a = % — /283 and oF are the twist operators of the fermionic sector:

+ 0 N;J w, w
P(2)o™ (w,w) ) T(w,w). (5.11)

= j{dm/) eb¢

The left chiral screening charges are given by:

Qv = fdzw( )ebo(2),

c-l»—-



and the same construction holds in the right sector. Let us consider the Feigin-Fuchs
representation of three point functions with various number of left screening charges:

1 1

€ € € k Nl

C(O"'“Své)v(ﬁ%o),(ﬁl,o) = <X7‘3R52R61 Qb Q%> ’ k +l S 2N7 5 = _ﬁ (g + b>7
(5.12)

_ 1 1
€ € € k Nl
Clars8),(82,0),(81,0) = <erR52R51 Qy Q% Qb> , k+le2N+1, J= WG (5 - b>.

The charge conservation implies that the structure constants above are non-zero if and
only if the even fusion rules ( k +1 € 2N U {0}):

1 1 1
+ = —(1—-r+2kb+—(1—-s4+2])-, 5.13
or the odd fusion rules ( £+ € 2N —1):
1 1 1
+ = —1-r+2k)b+—00—-s+20)- 0.14

are satisfied (k,l are integers in the range 0 <k <r—1, 0<I<s—1).
In the Feigin-Fuchs representation one can show that for any even integer n € 2N:

(D(wr) ... Y(wn)o™(1,1)07(0,0)) = — (W(wi) ... ¥(wn))o " (1,1)07(0,0)),
((wr). .. (wn- 1)15( )o™(1,1)07(0,0)) = (dh(w1) ... P(wp—1) P(w)o " (1,1)07(0,0)) .

If the even fusion rules (f.1J) are satisfied this implies

+ _
C r0.8).82.0),(1.0) =~ ar.8),(82.0).(61,0)°

Tt follows that ¢~

(ans.8),(62,0),(B1,0) # 0 and therefore the corresponding form has to vanish:

pl(\IR)co(XT87w;_7w1 ) 0

Similarly, for the odd fusion rules (5.14) one gets ¢t

(a'rs ) (/6270)7(/6170) # O and

+
pl(\IR)e,o(X’r‘S7 w; wii_) =0.
An additional information on zeros of the forms in question can be derived from the formula

) )
C .8, (=52,0,(81.0) = Claars,6),(82,0),(51,0)°

which is a simple consequence of ([.14). The form pgglo(xrs,w; ,wj") has to vanish for

the even fusion rules (p.13) and pl(ml o(Xrss wy, w)) for the odd fusion rules (5.14) with the
opposite sign in front of G5 in both cases.
The discussion above suggests the following definition of the fusion polynomials in the
Ramond sector:
r—1 s—1
s b+ qb~ 'b+q'bt
P {iﬁz} = H H <51:F52+p I ) I 1I <ﬂliﬂz+%>

p=1—rqg=1—s p'=1l-rq=1-s
(5.15)
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where p,q,p’, ¢’ run with the step 2 and satisfy the conditions: p+ ¢ — (r + s) € 4Z + 2
and p' 4+ ¢ — (r + s) € 4Z. One easily checks that for rs € 2N, Prs [iﬁl 2} are polynomials
of degree £ in (Ay — A1), and for s € 2N — 1 — of degree "% in (Ay — A;) with the
additional factor (41 F f2). On the other hand

PG L v wf, wf) = (A+ Ay — Ay,

Pan(S_1 L2 vy wi) = 75 (B F ) (A + Ay — Ay,
where (a), = F(Fa(z)" ) i the Pochhammer symbol. Taking into account our normalization
condition for x,s one thus finally gets
pl(\IR)e(XTsvw;ywl ) =P [iﬁﬁf} for rs € 2N, (5.16)
pl(\TjF:{l(XT’Sawg_wa—) Pcm [iﬁ[ﬂ for rs € 2N — 1.

6. Elliptic recurrence

As in the bosonic and the NS cases the first step in a derivation of the elliptic recurrence is
to find the large A asymptotic of the conformal block. The method of calculations proposed
in [ is based on the observation that the full dependence of the first two terms in the large
A expansion on the variables A;, ¢ can be read off from the first two terms of the % expansion
of the classical block. The essential point of this approach is the existence of the classical
limit of conformal blocks. In the present case this limit is to some extend justified by the
path integral representation of the N = 1 super-Liouville amplitudes defined by the action:

Ssper = / d*z <% |0¢]” + % ($0Y + POP) + 2ipb>Pepe®® + 2wb2u262b¢> . (6)

Within the functional approach the Ramond fields are represented by vertex opera-
tors (p.1(). Since the twist fields are light the fermionic sector does not contribute to
the classical limit at all. Strictly speaking the path integral representation implies the clas-
sical limit of the whole amplitude. Imposing extra restrictions on intermediate states one
may extend the argument to the sum of bilinear block products with fixed parity and inter-
mediate weight. Considering various amplitudes with the same classical limit one may get
the information concerning individual terms. This leads to the assumption that in the limit

b— 0, ibB; — pi, b2A; — 6 = p?,

the asymptotic behavior of each conformal block takes the form
83 b9 83 o

FA[F 2] () ~mem B0, [ ) e iR (o)

where f5 [53 52] (z) is the classical conformal block and coefficients 71, r 1 are independent

of b. Analyzing the leading powers of A in the forms p}‘\,'g, One

\K\
pNR(S Kyw27w1)0(ﬁ1 SR

put (S— Kuw;,wl)ocﬁgA e
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and the A dependence of the Gram matrix one can show that

1

r1 o< const, r1 X 5

D=

as functions of §.
Once the classical limits are known one can follow Zamolodchikov’s derivation in order
to find large A behavior. In the present case it yields:

mFA R R ) = (A o) + (5 81— A2 = Ay — A) mE?(2)

24 8
1
" (i Ay — Ag) In(1—2)+ (i — A — Ag) In(z) —i—fii(z) +0 <Z> , (6.3)
nFL [ 5] () = ~mA 47 (A o7) + (§- 81— 22— 80 - 2 mK(3)
F (= - -9+ (- 80— a) me)+0 (1), (6.4)
where
_EKl-2)
T=1 K0)

and f¥*(z) are functions of z specific for each type of block and independent of A; and c.
The large A asymptotic suggests the following form of superconformal blocks:

1 y c—3/ c—3/ c=3/
FA? {igi igﬂ (2) = (16g)>~ 21" 2720 Db (1 _ o) Tai ~B2ds (6.5)

32 (A1 +AsFASEA 1,110,
o [ )

, i 1,3 .
where ¢ = exp(inT) . The elliptic blocks H > [igi igf] (q) have the same analytic structure
as superconformal ones:

P |5 70] (@)

MA@ = o+ X T

1
MA@ = X s
m,n

The functions g**(g) depend on the block type and are independent of the external mo-
menta (3; and the central charge c¢. They have no singularities in A and are directly related
to the functions f**(2) in (p.J). The analytic form of these functions can be read off from
the ¢ = 1 elliptic blocks with A; = Ag = %6. The explicit formula for this blocks can be
obtained using the techniques of the chiral superscalar model [[[7]. The chiral correlation
function projected on the intermediate A NS module of the fields oy corresponding to the
lowest Ramond state in the bosonic sector and the NS vacuum state in the fermionic sector
takes the form:

(o0|a0(1)] yo0(2)|o0) = [(va]oo(1)]oo)|? (169)* [(1 — 2)]7% 03(g) " (6.6)
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On the other hand the b — i, 8; — 0 limit of each type of general even block is regular for
generic values of A and yields

tim lim 73 <55 (2) = (160)® [:(1 — 2] 63(0) "0 (0)

Comparing with (p.6) one gets
7@ =1

which completes our derivation of the elliptic recurrence in the Ramond sector.
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